Selection of most relevant input parameters using WEKA for artificial neural network based solar radiation prediction models
نویسندگان
چکیده
The prediction of solar radiation is important for several applications in renewable energy research. Solar radiation is predicted by a number of solar radiation models both conventional and Artificial Neural Network (ANN) based models. There are a number of meteorological and geographical variables which affect solar radiation prediction, so identification of suitable variables for accurate solar radiation prediction is an important research area. With this main objective, Waikato Environment for Knowledge Analysis (WEKA) software is applied to 26 Indian locations having different climatic conditions to findmost influencing input parameters for solar radiation prediction in ANN models. The input parameters identified are latitude, longitude, temperature, maximum temperature, minimum temperature, altitude and sunshine hours for different cities of India. In order to check the prediction accuracy using the identified parameters, three Artificial Neural Network (ANN) models are developed (ANN-1, ANN-2 and ANN-3). The maximumMAPE for ANN-1, ANN-2 and ANN-3models are found to be 20.12%, 6.89% and 9.04% respectively, showing 13.23% improved prediction accuracy of the ANN-2 model which utilizes temperature, maximum temperature, minimum temperature, height above sea level and sunshine hours as input variables in comparison to the ANN-1 model. The WEKA identifies temperature, maximum temperature, minimum temperature, altitude and sunshine hours as the most relevant input variables and latitude, longitude as the least influencing variables in solar radiation prediction. The methodology is also used to identify the solar energy potential of Western Himalayan state of Himachal Pradesh, India. The results show good solar potential with yearly solar radiation variation as 3.59–5.38 kWh/ m/day for a large number of solar applications including solar power generation in this region. & 2013 Elsevier Ltd. All rights reserved.
منابع مشابه
Global Solar Radiation Prediction for Makurdi, Nigeria Using Feed Forward Backward Propagation Neural Network
The optimum design of solar energy systems strongly depends on the accuracy of solar radiation data. However, the availability of accurate solar radiation data is undermined by the high cost of measuring equipment or non-functional ones. This study developed a feed-forward backpropagation artificial neural network model for prediction of global solar radiation in Makurdi, Nigeria (7.7322 N lo...
متن کاملEstimation of Monthly Mean Daily Global Solar Radiation in Tabriz Using Empirical Models and Artificial Neural Networks
Precise knowledge ofthe amount of global solar radiation plays an important role in designing solar energy systems. In this study, by using 22-year meteorologicaldata, 19 empirical models were tested for prediction of the monthly mean daily global solar radiation in Tabriz. In addition, various Artificial Neural Network (ANN) models were designed for comparison with empirical models. For this p...
متن کاملAn artificial neural network to predict solar UV radiation in Tabriz
Introduction: Solar radiation has a major role in design, utilization, development, and planning of solar energy. The most important source of natural ultraviolet radiation is the sun, which has an important role in many biologic processes. Some of these processes are useful, like the production of vitamin D in the body, or curing rickets, and some of them are not, such as ski...
متن کاملEstimating and modeling monthly mean daily global solar radiation on horizontal surfaces using artificial neural networks
In this study, an artificial neural network based model for prediction of solar energy potential in Kerman province in Iran has been developed. Meteorological data of 12 cities for period of 17 years (1997–2013) and solar radiation for five cities around and inside Kerman province from the Iranian Meteorological Office data center were used for the training and testing the network. Meteorologic...
متن کاملارزیابی دقت روشهای شبکه عصبی مصنوعی و عصبی- فازی در شبیهسازی تابش کل خورشیدی
Solar radiation is an important climate parameter which can affect hydrological and meteorological processes. This parameter is a key element in development of solar energy application studies. The purpose of this study is the assessment of artificial intelligence techniques in prediction of solar radiation (Rs) using artificial neural network (ANN) and adaptive neuro-fuzzy inference system (AN...
متن کامل